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Genomic selection (GS)

Marker assisted selection on whole genome 
high density markers.

Require high LD between QTL and markers
Many advantages over traditional methods

Explain more genetic variance,
Higher accuracy
Shorter generation interval 

Cost effective and widely implemented in dairy 
cattle genetic evaluation.

May be not cost effective for other livestock species



Genomic selection: models
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Marker (segment) effects model:

Total genetic effect model:
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Assumption on the genetic 
architecture of trait of interest Model 1 Model 2

Infinitesimal

Non-infinitesimal

RR-BLUP G-BLUP

BayesA, B,C,… TA-BLUP



Relationship matrix in MME

traditional BLUP pedigree

G-BLUP markers

TA-BLUP  markers & weights
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A: numerator relationship matrix
G: realized relationship matrix
TA: trait specific relationship matrix

euby ++= ZX



Trait specific relationship matrix (TA)
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Aim of this study

Assess the performance of TA-BLUP using the 
common dataset of this workshop.

Trait Q only.

Implement TA-BLUP in low density marker chips.

Low density marker were selected based on 
their size of estimated effects.



BayesB
Bayesian variable selection method B 
(Meuwissen et al. 2001)

RRBLUP
Ridge regression BLUP (Meuwissen et al. 2001) 

TABLUP
TAB: TABLUP with weights from BayesB
TAP: TABLUP with weights from RRBLUP.

Methods



Methods

Step 1: marker effect estimation

BayesB, RRBLUP GEBV

Step 2: construct TA matrix

All markers + w TA TABLUP GEBV

Subset markers + w TA TABLUP GEBV



Distribution of estimated marker effects
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Correlations of GEBVs between methods

TA-BLUP
RR-BLUP BayesB

TA-P TA-B

RR-BLUP 0.980 0.977 0.969

BayesB 0.938 0.969 0.981

TA-P 0.985 0.959 0.992

TA-B 0.942 0.999 0.962

Upper triangle: correlation in reference population (F0 - F3)
Lower triangle: correlation in the young individuals (F4)



Correlation of GEBVs between TA-BLUP using low density 
markers and RR-BLUP or BayesB using all markers
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The trait (Q) simulated in the common dataset 
obviously departed from the infinitesimal model.

Bayesian method should show advantage over RR-BLUP.

TA-BLUP performed as well as BayesB with all 
markers. (BayesB, TA-BLUP)

With only a proportion of all markers, TA-BLUP can 
perform nearly equivalent to HD-BayesB. 

GS with low density markers might be cost-effective by 
using TA-BLUP. (TA-BLUP 500)

Conclusions
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