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0. 0  Objective 
 
 
 
Evaluate and compare predictive accuracy of random 
forests, boosting and support vector machines for 
predicting genetic breeding values using SNP markers. 
 
 
 
 
 
 
 
 
 



Methods 
 

1.0 Classification and Regression Trees (CART) 
 
 

• CARTs are the building blocks (base procedure or base 
learners) for random forests. 

 
• We used CARTs as base procedure for boosting as well. 

 
• CARTs recursively partition observations into two groups with 

minimal within-group variance at a time. 
 
• CART performs flexible nonparametric classification and 

regression.   
 



• Three key steps in building Classification Trees 
 

Let response variable be    y = (y1, y2, y3,.., yn) and  
  
                Let a set of p predictors be   x =(x1, x2, x3,…, xp).  
 
                 with values                          xi = (x1i, x2i, x3i,…, xpi) 
 
 

Classification Trees are build to relate y to x as follows: 
 
 
Step 1.  At each step select only one of the x1, x2,…, xp predictors (say, xj)  
that is most predictive of y. Choose a split point xj =c that optimally splits the 
observations into two subgroups. One group falls in xj ≤ c and the other in xj > 
c.  
 
 



Step 2.  Fit a constant model in each cell of the resulting  
partition, e.g. compute mean or median for continuous 
responses.  

 
 
Step 3.  Repeat the partitioning process until some stopping rule 

     is satisfied, e.g. until a terminal cell has at most 5  
     observations. 

 
 

 
 
 
 
 
 
 



  Schematic Tree Structure for a binary (0,1) response 
 
 
 

Notes: 
1. “Stumps” are trees for 
which only one break is 
allowed in the predictor.  
 
2. The trees typically 
stand upside down in 
print. 
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An example classification tree for genomic selection of a discrete trait using 
99 predictors called P1, P2, …, P99. 

 
 

 
 
 
 



The statistical model fitted by CART: 
 
CART fits additive linear combinations of basis functions: 
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where      j =1, 2, 3, …p predictors each having  

 m =1, 2, 3,…Mj transformations, basis functions or 
breakpoints = ( ).  (.)jmh

          Each basis function ( ) has weight = .  (.)jmh jmβ

 
 
 
 



The specific basis functions used by CART are indicator variables:  
 
Example: f(x, z) = β0 +β1[I(x ≤ c1)] +β2[I(x > c1 & z ≤ c2)]  

     +β3[I(x > c1 & z > c2)] 
 
where     x and z are predictors,  
              c1 and c2 are cutpoints  
              I(.) are indicator functions or indicator basis functions. 
 
NB: This examples shows that splits beyond the initial split of the 
root node represent interaction effects. 

 
 
 
 



2.0 Random Forests 
 

Random forest predicts a new observation x using 
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• The Random forest settings we used: 
• The number of regression trees, ntree =1000. 

 
• Number of SNPs sampled randomly without replacement 

and used to split each tree node, mtry = 3000≈ 10031÷3. 
 

• Minimum number of observations allowed in terminal 
nodes of the trees, nodesize                = 1. 

 
 
 
 
 



Importance ranking of SNPs 
 
• Random forest was used to rank the SNPs in order of 

importance based on the relation: 
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where    j = 1,2,…,10031 SNPs 
      K = total number of trees (1000),  

                        υj  = prediction error with the jth SNP permuted)   
                         υ  = prediction error with no SNP shuffled. 
 
 



• We mapped the 30 most important SNPs from the 10031 to 
their locations on chromosomes.  

 
 
3.0   Boosting 
 
Boosting fits an additive model:  
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        where mβ , m =1,2,…, M are basis expansion coefficients,  

                     );( γxb =basis functions of x, having parameters γ . 



 
• We used stochastic gradient boosting to fit generalized boosted 

regression models assuming a normal distribution for the 
quantitative trait Q and squared error loss. 

 
 
• Regression trees were used as basis functions, base learners, or 

base procedures similar to random forests. 
 
 
• The minimum number of observations allowed in the terminal 

tree nodes was 1. 
 



• The change in the out-of-bag squared error loss was plotted 
against the number of iterations and boosting stopped when the 
plot bottomed out. 

 
 
• The fraction of the training set observations randomly selected 

to propose the next tree in the expansion (out-of-bag) was set 
to 0.5. 

 
 

 
• The shrinkage parameter applied to each tree in the additive 

expansion of the basis functions was set to 0.001. 
 
 
 



4.0  Support Vector Machines (SVM) 
 
• We performed epsilon- SVM regression using linear kernel 

basis functions to fit the model:  
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Optimization of problem (5& 6) using quadratic programming 
produces solution functions: 
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Where iα̂ , *ˆiα  are positive coefficients and the kernel function  

K(
j

xix , ) is a N × N  symmetric and positive definite matrix. 
 
 



• We set the value of the cost parameter at C = 0.001 and 
allowable error at ε =10 (tolerable error) using trial and error 
since automatic tuning of the cost function proved unfeasible 
on our quad core PC. 

 
• With 10031 SNPs as predictors, mapping the data to higher 

dimensional feature spaces using nonlinear kernels would not 
improve the fit much.  

 
 
 
 
 
 



5.0  Results 
 

Random forests 
 
Table 1: Performance of random forest regression of Q against 
10031 SNPs based on the Pearson correlation between GEBV and 
TBV from a 5-fold cross-validation.  
 
Replicate N 5-fold-CV

  Correlation 95% LCL 95% UCL
1 439 0.5878 0.5225 0.6455
2 416 0.4866 0.4092 0.5563
3 447 0.4183 0.3382 0.4916
4 490 0.3930 0.3151 0.4651
5 514 0.4448 0.3723 0.5113

Average  0.4661 0.39146 0.53396
 



 

Importance plot for 
regression of Q on the 10031 
SNPs (labelled m1 to 
m10031).  
 
y-axis =Rank order of 
importance of each SNP.   
 
x-axis = % decrease in 
accuracy (%IncMSE)  
 
or mean decrease in node 
impurity (%decIMP) in 
predicting Q when values of a 
given SNP are randomly 
permuted.  
 



 

Chromosomal positions of 
the 200 most important 
SNPs from the pool of 
10031 for the quantitative 
trait Q.  
 
And positions of QTL. 
 



 

The change in squared 
error loss against the 
number of iterations for 
generalized boosted 
regression of Q on 10031 
SNPs. Stop  at 3656 
iterations. 
 
Black line = training data 
(100% of all data),  
Red line = OOB data (50% 
of all data). 
 

Boosting 



Table 2: Performance of boosted generalized regression model, 
using Gaussian errors, squared error loss and regression trees as 
base learners based on Pearson correlation between GEBV and 
observed values in the validation datasets used in the 5-fold-CV.  
 
 
Replicate N No. 

iterations Correlation 95% 
LCL

95% 
UCL

1 439 3242 0.6003 0.5364 0.6567
2 416 3386 0.5183 0.4438 0.5849
3 447 3327 0.4447 0.3666 0.5158
4 490 3353 0.4443 0.3699 0.5124
5 514 3296 0.5057 0.4380 0.5671

Average  0.4957 0.4234 0.5610
 
 
 



Support vector machines 
 
Table 3. Performance of epsilon-support vector machine 
regression model with the linear kernel, penalty = 0.001 and 
epsilon=10 based on Pearson correlation between GEBV and 
observed values in the validation datasets used in the 5-fold-CV.  
 
 
Replicate N Correlation 95% 

LCL
95% 
UCL 

1 439 0.6100 0.5472 0.6652 
2 416 0.5670 0.4975 0.6284 
3 447 0.4298 0.3506 0.5022 
4 490 0.4117 0.3349 0.4823 
5 514 0.4962 0.4276 0.5583 

Average  0.5029 0.4316 0.5673 
 



6.0  Conclusions 
The correlation between GEBV and TBV was: 
 
• Boosting                         : 0.547 (95% CL= 0.499-0.591) 
• Support vector machines: 0.497 (CL= 0.446-0.545) 
• Random forests              : 0.483 (CL= 0.431-0.531) 
 
•  So, all three methods achieved similar levels of predictive 

accuracy. Boosting was somewhat more accurate than SVM 
and random forests.  

 
 
• All the three methods had reasonable predictive accuracies and 

can thus be used to predictive quantitative traits using dense 
SNP markers. 



 
 
 
 
 
 

Thank you for listening! 


