Genome wide evaluation using dominance

Robin Wellmann, Jörn Bennewitz

Department of Animal Husbandry and Animal Breeding

University of Hohenheim

May 12, 2010

Outline

- Why include dominance?
- Breeding values and dominance values
- Simulation
- Prediction of genomic breeding values
 - BLUP without dominance
 - BLUP with dominance
 - Stepwise procedure
- Comparison of different methods
- Conclusions

The inclusion of dominance

- could increase the accuracy of predicted breeding values,
- could be used to find mating pairs with good combining ability by recovering inbreeding depression and utilizing possible overdominance.

According to Falconer (1996), the breeding value of individual i is

$$BV_i = \sum_{n \in \mathcal{Q}} (a_n + d_n(q_n - p_n))(v_{ni} + m_{ni}),$$

and the dominance deviation is

$$DV_i = \sum_{n \in \mathcal{Q}} -2d_n(v_{ni} - p_n)(m_{ni} - p_n),$$

where

 $\begin{array}{ll} v_{ni} \in \{0,1\} & \mbox{paternal allele of individual } i \mbox{ at QTL } n, \\ m_{ni} \in \{0,1\} & \mbox{maternal allele of individual } i \mbox{ at QTL } n, \\ a_n & \mbox{additive effect of QTL } n, \\ d_n & \mbox{dominance effect of QTL } n \\ p_n & \mbox{frequency of allele 1 at QTL } n, \\ q_n & \mbox{frequency of allele 0 at QTL } n. \end{array}$

Breeding value and dominance deviation are estimated as

$$EBV_i = \sum_{n \in \mathcal{M}} (\hat{a}_n + \hat{d}_n (q_n - p_n))(v_{ni} + m_{ni}),$$

and

$$EDV_i = \sum_{n \in \mathcal{M}} -2\hat{d}_n(v_{ni} - p_n)(m_{ni} - p_n),$$

where \hat{a}_n and \hat{d}_n are predicted marker effects.

Breeding value and dominance deviation are estimated as

$$EBV_i = \sum_{n \in \mathcal{M}} (\hat{a}_n + \hat{d}_n (q_n - p_n))(v_{ni} + m_{ni}),$$

and

$$EDV_i = \sum_{n \in \mathcal{M}} -2\hat{d}_n(v_{ni} - p_n)(m_{ni} - p_n),$$

where \hat{a}_n and \hat{d}_n are predicted marker effects.

We compared different methods to predict marker effects by simulation.

We simulated a population

- that has the same LD pattern as the target population (see Villa-Angulo et al., 2009),
- where each trait has a different distribution of additive effects and dominance degrees,
- that has a smaller genome than the target population in order to reduce computation time.

Characteristics of the QTL effects:

• The distribution of the additive effects A_n was a mixture of a double exponential distribution and a normal distribution, i.e.

$$A_n \sim 0.95 \cdot \mathcal{L}(0, \sigma_{\mathcal{L}}^2) + 0.05 \cdot \mathcal{N}(0, (5\sigma_{\mathcal{L}})^2),$$

where $\sigma_{\mathcal{L}}$ was chosen such that $\operatorname{Var}(A_n) = \sigma_A^2$.

- Normally distributed dominance degrees $G_n = \frac{D_n}{|A_n|}$ have mean μ_G and variance σ_G^2 .
- Additive effects and dominance degrees are independent.
- No epistasis.

Characteristics of the simulated population:

- Fisher-Wright diploid population,
- independent crossovers,
- 1 chromosome which equals 1 Morgan,
- 1666 markers per Morgan,
- 120 QTL on average per Morgan,
- no selection,
- N_e decreased from 1000 to 100 within 400 generations,
- marker effects were predicted from 1000 individuals.

Methods to predict marker effects

BLUP with and without dominance

 $Y = \mu 1 + Z_A A + E, \text{ (without dominance)}$ $Y = \mu 1 + \beta F + Z_A A + Z_D (D - \mu_D) + E, \text{ (with dominance)}$

where

- Y vector with phenotypic values,
- μ overall mean,
- F vector with estimated inbreeding coefficients,
- *A* vector with additive effects of markers,
- *D* vector with dominance effects of markers,
- Z_A gene content matrix with entries 0,1 and 2,
- Z_D indicator matrix for heterozygosity with entries 0 and 1,
 - E error

BLUP with and without dominance

 $Y = \mu 1 + Z_A A + E$, (without dominance) $Y = \mu 1 + \beta F + Z_A A + Z_D (D - \mu_D) + E$, (with dominance) where

$$E(A) = E(E) = 0,$$

$$E(D) = \mu_D,$$

$$Var(A) = \sigma_A^2 I,$$

$$Var(D) = \sigma_D^2 I,$$

$$Var(E) = \sigma_E^2 I,$$

A and D are independent, Random effects are normally distributed, Variances captured by markers equal V_Aand V_D.

Stepwise procedure

Steps:

1) A and $D - \mu_D$ were predicted with BLUP, using the model

$$Y = \mu 1 + \beta F + Z_A A + Z_D (D - \mu_D) + E,$$

but the prediction of $D - \mu_D$ was discarded.

- 2) Observations were corrected for predicted additive effects and inbreeding depression as $\tilde{Y} = Y \hat{\mu}1 \hat{\beta}F Z_A\hat{A}$.
- 3) The centered dominance effects were predicted again for the corrected observations by assuming large variances for QTL where the predicted additive effect was large, using the model

$$\tilde{Y} = Z_D(D - \mu_D) + E.$$

Stepwise procedure

Steps:

- The expectations of the dominance effects were estimated by dividing estimated inbreeding depression between QTL, putting more weight on QTL with large predicted additive effects.
- 5) The dominance effects were obtained by adding the estimated expectations and the predicted centered dominance effects.

Stepwise procedure

Steps:

- The expectations of the dominance effects were estimated by dividing estimated inbreeding depression between QTL, putting more weight on QTL with large predicted additive effects.
- 5) The dominance effects were obtained by adding the estimated expectations and the predicted centered dominance effects.

 \Rightarrow This method utilizes that additive effects and dominance effects are dependent.

Observation:

smaller genome \rightarrow smaller number of QTL

 \rightarrow larger variation of variance components

Problem:

• How to account for the variation of variance components?

Observation:

smaller genome \rightarrow smaller number of QTL

 \rightarrow larger variation of variance components

Problem:

- How to account for the variation of variance components?
 - A multiple regression was carried out with the variance components as explanatory variables and the accuracy as the dependent variable.

As summarized by Meuwissen (2009) we have approximately

$$r_{BV} = \sqrt{\frac{Nh^2}{Nh^2 + Q_e}},$$

where

- r_{BV} accuracy of predicted breeding values, i.e. correlation between true and predicted breeding values
 - h^2 narrow sense heritability,
 - N number of training records,
 - Q_e effective number of QTL loci.

This can be simplified to

$$r_{BV} = \sqrt{\frac{ah^2}{1+ah^2}},$$

where

$$a = \frac{N}{Q_e}.$$

Solving for ah^2 gives

$$\frac{r_{BV}^2}{1 - r_{BV}^2} = ah^2.$$

Therefore, we assumed the linear model

$$\frac{r_{BV,j}^2}{1 - r_{BV,j}^2} = a_1 h_j^2 + a_2 d_j^2 + a_3 |\mathcal{I}_j| + e_j,$$

where

- $r_{BV,j}$ accuracy of predicted breeding value for trait j
 - h_i^2 narrow sense heritability,
 - d_i^2 ratio of dominance variance to phenotypic variance,
 - \mathcal{I}_{j} Inbreeding depression (Decline of the trait value when inbreeding coefficient increases from 0% to 100%).
 - e_j error.

Therefore, we assumed the linear model

$$\frac{r_{BV,j}^2}{1 - r_{BV,j}^2} = a_1 h_j^2 + a_2 d_j^2 + a_3 |\mathcal{I}_j| + e_j,$$

where

- $r_{BV,j}$ accuracy of predicted breeding value for trait j
 - h_i^2 narrow sense heritability,
 - d_i^2 ratio of dominance variance to phenotypic variance,
 - \mathcal{I}_{j} Inbreeding depression (Decline of the trait value when inbreeding coefficient increases from 0% to 100%).
 - e_j error.
- \rightarrow Model is also used to fit accuracy of dominance values $r_{DV,j}$.

Results and conclusions

Results

Regression coef. for accuracy of breeding value						
	h_j^2	d_j^2	$ \mathcal{I}_j $			
	a_1	a_2	a_3			
BLUP without dominance	9.0	3.2	-0.3			
BLUP with dominance	9.0	4.4	-0.3			
Stepwise procedure	9.2	5.4	-0.3			

Regression coef. for accuracy of dominance deviation

	h_j^2	d_j^2	$ \mathcal{I}_j $
	a_1	a_2	a_3
BLUP with dominance	0.2	2.4	1.0
Stepwise procedure	0.8	6.2	0.9

Average values: $d^2 = 0.035, \mathcal{I} = 0.43, h^2 = 0.25$.

Conclusions

- Small genomes with few QTL cause substantial variation of variance components between replicates. A nonlinear regression approach can utilize the variation of variance components.
- BLUP is not optimal for the prediction of genomic breeding values because it can not account for the non-normal joint distribution of additive and dominance effects.

References

- Falconer, D. S., Mackay, T. F. C. (1996). Introduction to quantitative genetics. London, UK: Longman
- Meuwissen, T. H. E. (2009). Accuracy of breeding values of 'unrelated' individuals predicted by dense SNP genotyping. *Genetics Selection Evolution* 41:35
- Villa-Angulo, R., Matukumalli, L. K., Gill et al. (2009). High-resolution haplotype block structure in the cattle genome. *BMC Genetics* 10:19.

Acknowledgement

The study was supported by a grant from the Deutsche Forschungsgemeinschaft, DFG.

Thank you for your attention!