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Why include dominance?

The inclusion of dominance

∙ could increase the accuracy of predicted breeding values,

∙ could be used to find mating pairs with good combining
ability by recovering inbreeding depression and utilizing
possible overdominance.
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Breeding values and

dominance values
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Breeding values and dominance values

According to Falconer (1996), the breeding value of individual i is

BVi =
∑

n∈Q

(an + dn(qn − pn))(vni +mni),

and the dominance deviation is

DVi =
∑

n∈Q

−2dn(vni − pn)(mni − pn),

where
vni ∈ {0, 1} paternal allele of individual i at QTL n,
mni ∈ {0, 1} maternal allele of individual i at QTL n,
an additive effect of QTL n,
dn dominance effect of QTL n

pn frequency of allele 1 at QTL n,
qn frequency of allele 0 at QTL n.
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Breeding values and dominance values

Breeding value and dominance deviation are estimated as

EBVi =
∑

n∈ℳ

(ân + d̂n(qn − pn))(vni +mni),

and

EDVi =
∑

n∈ℳ

−2d̂n(vni − pn)(mni − pn),

where ân and d̂n are predicted marker effects.
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Breeding values and dominance values

Breeding value and dominance deviation are estimated as

EBVi =
∑

n∈ℳ

(ân + d̂n(qn − pn))(vni +mni),

and

EDVi =
∑

n∈ℳ

−2d̂n(vni − pn)(mni − pn),

where ân and d̂n are predicted marker effects.

We compared different methods to predict marker effects by
simulation.
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Simulation
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Simulation

We simulated a population

∙ that has the same LD pattern as the target population (see
Villa-Angulo et al., 2009),

∙ where each trait has a different distribution of additive effects
and dominance degrees,

∙ that has a smaller genome than the target population in order
to reduce computation time.
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Simulation

Characteristics of the QTL effects:

∙ The distribution of the additive effects An was a mixture of a
double exponential distribution and a normal distribution, i.e.

An ∼ 0.95 ⋅ ℒ(0, �2

ℒ) + 0.05 ⋅ N (0, (5�ℒ)
2),

where �ℒ was chosen such that Var(An) = �2

A.

∙ Normally distributed dominance degrees Gn = Dn

∣An∣
have

mean �G and variance �2

G.

∙ Additive effects and dominance degrees are independent.

∙ No epistasis.
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Simulation

Characteristics of the simulated population:

∙ Fisher-Wright diploid population,

∙ independent crossovers,

∙ 1 chromosome which equals 1 Morgan,

∙ 1666 markers per Morgan,

∙ 120 QTL on average per Morgan,

∙ no selection,

∙ Ne decreased from 1000 to 100 within 400 generations,

∙ marker effects were predicted from 1000 individuals.
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Methods

to predict marker effects
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Methods to predict marker effects

BLUP with and without dominance

Y = �1 + ZAA+ E, (without dominance)
Y = �1 + �F + ZAA+ ZD(D − �D) + E, (with dominance)

where

Y vector with phenotypic values,
� overall mean,
F vector with estimated inbreeding coefficients,
A vector with additive effects of markers,
D vector with dominance effects of markers,
ZA gene content matrix with entries 0,1 and 2,
ZD indicator matrix for heterozygosity with entries 0 and 1,
E error
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Methods to predict marker effects

BLUP with and without dominance

Y = �1 + ZAA+ E, (without dominance)
Y = �1 + �F + ZAA+ ZD(D − �D) + E, (with dominance)

where

E(A) = E(E) = 0,

E(D) = �D,

Var(A) = �2

AI,

Var(D) = �2

DI,

Var(E) = �2

EI,

A and D are independent,
Random effects are normally distributed,

Variances captured by markers equal VAand VD.
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Methods to predict marker effects

Stepwise procedure

Steps:

1) A and D − �D were predicted with BLUP, using the model

Y = �1 + �F + ZAA+ ZD(D − �D) + E,

but the prediction of D − �D was discarded.

2) Observations were corrected for predicted additive effects
and inbreeding depression as Ỹ = Y − �̂1− �̂F − ZAÂ.

3) The centered dominance effects were predicted again for the
corrected observations by assuming large variances for QTL
where the predicted additive effect was large, using the
model

Ỹ = ZD(D − �D) + E.

– p. 13



Methods to predict marker effects

Stepwise procedure

Steps:

4) The expectations of the dominance effects were estimated
by dividing estimated inbreeding depression between QTL,
putting more weight on QTL with large predicted additive
effects.

5) The dominance effects were obtained by adding the
estimated expectations and the predicted centered
dominance effects.
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Methods to predict marker effects

Stepwise procedure

Steps:

4) The expectations of the dominance effects were estimated
by dividing estimated inbreeding depression between QTL,
putting more weight on QTL with large predicted additive
effects.

5) The dominance effects were obtained by adding the
estimated expectations and the predicted centered
dominance effects.

⇒ This method utilizes that additive effects and dominance
effects are dependent.
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Comparison of methods:

nonlinear regression
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Comparison of methods: nonlinear regression

Observation:

smaller genome → smaller number of QTL
→ larger variation of variance components

Problem:

∙ How to account for the variation of variance components?
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Comparison of methods: nonlinear regression

Observation:

smaller genome → smaller number of QTL
→ larger variation of variance components

Problem:

∙ How to account for the variation of variance components?

∙ A multiple regression was carried out with the variance
components as explanatory variables and the accuracy as
the dependent variable.
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Comparison of methods: nonlinear regression

As summarized by Meuwissen (2009) we have approximately

rBV =

√

Nℎ2

Nℎ2 +Qe

,

where

rBV accuracy of predicted breeding values, i.e.
correlation between true and predicted breeding values

ℎ2 narrow sense heritability,
N number of training records,
Qe effecive number of QTL loci.
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Comparison of methods: nonlinear regression

This can be simplified to

rBV =

√

aℎ2

1 + aℎ2
,

where

a =
N

Qe

.
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Comparison of methods: nonlinear regression

Solving for aℎ2 gives

r2BV

1− r2BV

= aℎ2.
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Comparison of methods: nonlinear regression

Therefore, we assumed the linear model

r2BV,j

1− r2BV,j

= a1ℎ
2

j + a2d
2

j + a3∣ℐj∣+ ej,

where

rBV,j accuracy of predicted breeding value for trait j

ℎ2

j narrow sense heritability,

d2j ratio of dominance variance to phenotypic variance,

ℐj Inbreeding depression (Decline of the trait value

when inbreeding coefficient increases from 0% to 100%).
ej error.
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Comparison of methods: nonlinear regression

Therefore, we assumed the linear model

r2BV,j

1− r2BV,j

= a1ℎ
2

j + a2d
2

j + a3∣ℐj∣+ ej,

where

rBV,j accuracy of predicted breeding value for trait j

ℎ2

j narrow sense heritability,

d2j ratio of dominance variance to phenotypic variance,

ℐj Inbreeding depression (Decline of the trait value

when inbreeding coefficient increases from 0% to 100%).
ej error.

→ Model is also used to fit accuracy of dominance values rDV,j.
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Results and conclusions

– p. 20



Results

Regression coef. for accuracy of breeding value
ℎ2

j d2j ∣ℐj∣

a1 a2 a3

BLUP without dominance 9.0 3.2 -0.3
BLUP with dominance 9.0 4.4 -0.3

Stepwise procedure 9.2 5.4 -0.3

Regression coef. for accuracy of dominance deviation
ℎ2

j d2j ∣ℐj∣

a1 a2 a3

BLUP with dominance 0.2 2.4 1.0
Stepwise procedure 0.8 6.2 0.9

Average values: d2 = 0.035, ℐ = 0.43, ℎ2 = 0.25.
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Conclusions

∙ Small genomes with few QTL cause substantial variation of
variance components between replicates. A nonlinear
regression approach can utilize the variation of variance
components.

∙ BLUP is not optimal for the prediction of genomic breeding
values because it can not account for the non-normal joint
distribution of additive and dominance effects.
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Thank you for your attention!
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