H-LIKELIHOOD OPENS A NEW WAY OF ESTIMATING GENETIC VALUES USING GENOME-WIDE DENSE MARKER MAPS

Xia Shen*, Lars Rönnegård, Örjan Carlborg

*The Linnaeus Centre for Bioinformatics, Uppsala University, Sweden

$$
\text { QTLMAS } 2010
$$

Marker analysis v.s. Interval mapping

- Single marker analysis.
- Interval mapping.
- Multiple interval mapping.
- All-marker analysis.

Marker analysis V.s. Interval mapping

- Single marker analysis.
- Interval mapping.
- Multiple interval mapping.
- All-marker analysis.

ALL-MARKER ANALYSIS

- model-selection-free.
- violates the usual rule of model dimensionality.
- shrinks marker effects with zero values.
- Zeng (1993) Proc. Natl. Acad. Sci. USA.
- Meuwissen, et al. (2001) Genetics.
- Xu (2003) Genetics.
- Xu (2007) Biometrics.

ALL-MARKER ANALYSIS

- model-selection-free.
- violates the usual rule of model dimensionality.
- shrinks marker effects with zero values.
- Zeng (1993) Proc. Natl. Acad. Sci. USA.
- Meuwissen, et al. (2001) Genetics.
- Xu (2003) Genetics.
- Xu (2007) Biometrics.

BAYESIAN ANALYSIS V.S. HiERARCHICAL LIKELIHOOD

- Bayesian
- flexible.
- priors are required.
- time-consuming.
- h-likelihood
- a unified and direct method for random effect models.
- hierarchical generalized linear models (HGLM, Lee \& Nelder 1996)
- double HGLM (DHGLM, Lee \& Nelder 2006).
- can be estimated by iterating GLMs.
- No prior specification is required.
- The computation is fast.

BAYESIAN ANALYSIS V.S. HIERARCHICAL LIKELIHOOD

- Bayesian
- flexible.
- priors are required.
- time-consuming.
- h-likelihood
- a unified and direct method for random effect models.
- hierarchical generalized linear models (HGLM, Lee \& Nelder 1996)
- double HGLM (DHGLM, Lee \& Nelder 2006).
- can be estimated by iterating GLMs.
- No prior specification is required.
- The computation is fast.

Double HGLM

The phenotype of individual i is postulated as a random effect model

$$
y_{i}=\sum_{k} x_{i k} \beta_{k}+\sum_{j} z_{i j} g_{j}+e_{i}
$$

with $g_{j} \sim N\left(0, \lambda_{j}\right)$ for marker j and residual $e_{i} \sim N\left(0, \sigma^{2}\right)$.
variance of marker effect, λ_{j}, is modeled as
with intercept a and normally distributed random effect b_{j}.

Double HGLM

The phenotype of individual i is postulated as a random effect model

$$
y_{i}=\sum_{k} x_{i k} \beta_{k}+\sum_{j} z_{i j} g_{j}+e_{i}
$$

with $g_{j} \sim N\left(0, \lambda_{j}\right)$ for marker j and residual $e_{i} \sim N\left(0, \sigma^{2}\right)$. The variance of marker effect, λ_{j}, is modeled as

$$
\lambda_{j}=a+b_{j}
$$

with intercept a and normally distributed random effect b_{j}.

Spatial Correlation

The correlated random effects of the marker-specific variance, b_{j} 's, has a variance-covariance matrix

$$
\sigma_{b}^{2}\left(\begin{array}{ccccc}
1 & \rho & \rho^{2} & \cdots & \rho^{q-1} \\
\rho & 1 & \rho & \cdots & \vdots \\
\rho^{2} & \rho & 1 & \cdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \rho \\
\rho^{q-1} & \cdots & \cdots & \rho & 1
\end{array}\right)
$$

where q is number of markers. This is a spatial correlation defined for the second level of DHGLM.

Trait G

Trait G

Trait G

Trait B

Trait B

Trait B

Conclusions \& Discussion

- Using h-likelihood, the all-marker shrinkage analysis can be done with a non-Bayesian framework.
- The DHGLM algorithm is fast and is able to handle various distribution families.
- Good starting values lead to faster convergence.

Implementation

- R package hglm (Rönnegård, Shen \& Alam 2010).
- New implementation is in progress...

ACKNOWLEDGEMENT

- Supervisors
- Lars Rönnegård and Örjan Carlborg
- Group members
- Lucy Crooks, Weronica Ek, Anna Johansson, Marcin Kierczak, Xidan Li, Stefan Marklund, Ronnie Nelson, and Mats Pettersson.
- Previous members
- François Besnier
- Collaboration
- Carl Nettelblad

Computational Genetics

